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Complex Varieties

A complex manifold X is a manifold with an atlas of charts to the
open balls in Cn, such that the transition maps are holomorphic. We
denote by Ω1

X the holomorphic cotangent bundle and by KX = Ωn
X

the canonical line bundle.

Example: affine spaces Cn, projective spaces Pn = Cn t Pn−1, tori
Cn/Z2n

A standard complex analytic space V is a subspace of a domain
U ⊆ CN such that V ⊆ U is defined by finitely many holomorphic
functions.

More generally, a complex analytic space is a ringed space which is
locally isomorphic standard analytic spaces. A complex variety is an
integral analytic space. It is a complex manifold if and only if it is
smooth.

Assume that X is a compact complex variety, then there is a
bimeromorphic morphism X̃ → X such that X̃ is a complex
manifold.
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Complex Varieties

A compact complex variety X is called a Kähler variety if it carries a
Kähler form, that is, a closed definite positive (1, 1)-form (Kähler
1933).

A complex variety X is called projective if it is an analytic subvariety
of the projective space Pm.

Every complex projective variety X is compact Kähler. Chow’s
theorem (1949) also asserts that X is then defined globally as the
zero locus of finitely many homogeneous polynomials. Serre’s GAGA
principle (1956) then allows us to use algebraic methods to study
projective complex varieties.

A complex compact variety X is projective if and only if it carries an
ample line bundle L, that is, c1(L) ∈ H1,1(X ,C) ∩ H2(X ,Q) is a
Kähler class (Kodaira 1954).

Goal: Classify (compact) complex manifolds.
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Classification of Curves

Every compact complex curve is projective. Smooth irreducible
curves C can be classified according to their genera g(C ). More
roughly, we can divide in three classes as follows.

g(C ) = 0, C ∼= P1 is called a rational curve.

g(C ) = 1, C is called an elliptic curve.

g(C ) > 1, C is a higher genus curves.
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Classification of Surfaces

Classification of surfaces was already initiated by the Italian school
in the late 19th century (Albanese, Bertini, Castelnuovo, del Pezzo,
Enriques, Segre, Severi...).

Starting from dimension 2, there is a new type of operation, blow-up
of a point (subvariety).

successive blow-ups of three points
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Classification of Surfaces

It is natural to consider X and its blow-ups in the same class.
Indeed, we can “inverse” a blow-up by the following theorem.

Theorem (Castelnuovo)

Assume that C ∼= P1 is a rational curve in a surface Y such that
C 2 = −1 (Such a curve is called a (−1)-curve). Then there is a
morphism Y → X blowing down C to a point.

Starting from a compact complex surface X , we can blow down
successfully (−1)-curves. After finitely many steps, we arrive at a
surface S which contains no (−1)-curve. Such a surface is called a
minimal surface.

A minimal surface is not the blow-up of any surface.
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Classification of Surfaces

Projective minimal surfaces are classified by Enriques (1910s) and
non algebraic minimal compact surfaces are classified by Kodaira
(1960s)

For every compact complex manifold, the Kodaira dimension κ(X )
of X is the transcendental degree over C minus 1 of the
pluricanonical section ring

R(KX ) =
+∞⊕
m=0

H0(X ,K⊗mX ) =
+∞⊕
m=0

H0(X ,mKX ).

We have κ(X ) ∈ {−1, 0, ..., dim X}.

According to the Kodaira dimensions, we have the following
classification of minimal compact Kähler surfaces S .
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Classification of Surfaces

κ(S) = −1, S ∼= P2 (analogue of P1)

κ(S) = −1, S is a ruled surface. There is a morphism S → B to a
curve whose fibers are P1 (mixture of P1 and some other curve B)

κ(S) = 0, S is one of the following surfaces: K3 surfaces,
two-dimensional complex tori, Enriques surfaces, bielliptic surfaces
(analogue of elliptic curves)

κ(S) = 1, S is an elliptic surfaces. There is a morphism S → B to a
curve whose smooth fibers are elliptic curves (mixture of elliptic
curves and some other curve B)

κ(S) = 2, S is a surface of general type (analogue of higher genus
curves)

In gross, S is either a mixture of curves (lower dimensional
varieties), or one of the analogues of curves.
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Analogues in Higher Dimensions

One might tend to generalize surface classification methods to
higher dimensions. This shall consists of two steps.

(1) “Minimize” a given compact complex variety X .

(2) Classify “minimal” compact complex varieties.

The step (1) above is one of the motivation of higher dimensional
birational geometry. Two varieties X and Y are called birationally
equivalent if they are isomorphic after removing some proper
subvarieties.

For example, X is birational to a blow-up of it.

One of the main ingredients of the step (2) is the abundance
conjecture.
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Minimal Model Programs

In a surface X , a (−1)-curve C is a KX -negative rational curve, that
is, C · KX < 0. In higher dimensions, Mori’s idea is to look at
KX -negative rational curve.

For a projective manifold X , we define

NE(X ) ⊆ Hn−1,n−1(X ,C)

as the closed convex cone generated by curves, and

Nef(X ) ⊆ H1,1(X ,C)

as the closed convex cone generated by ample line bundles
(divisors).

The cones NE(X ) and Nef(X ) are dual to each other (Kleiman
1966). That is, a line bundle L is nef iff C · L > 0 for any curve C .
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Minimal Model Programs

Mori (1979) proved the so-called bend-and-break theorem, which
first reveals the structure of NE(X ) (with the use of reduction
modulo p method). Thanks to a sequence of work by other
mathematicians, we have now the following Cone Theorem.

Cone Theorem (Mori, Kawamata, Reid, Shokurov, etc.)

Let X be a mildly singular projective variety.

1 There exist an at most countable set J of rational curves Cj ⊆ X with
KX · Cj < 0 such that

NE(X ) = NE(X )KX>0 +
∑
j∈J

R+[Cj ].

2 (Contraction Theorem.) Let R = R+[Cj ] be a KX -negative extremal ray.
Then there is a unique projective fibration cR : X → Z such that a curve
C is contracted by cR if and only if the class of C is in R.

A projective variety X (of dimension at least 3) is called minimal if
KX is nef, that is NE(X ) = NE(X )KX>0.
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Minimal Model Programs

KX < 0

KX > 0

Section of some NE(X )
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Minimal Model Programs

Similarly to surface case, we wish to use the Contraction Theorem
instead of Castelnuovo Theorem to minimize a given variety.

Several difficulties raise in higher dimension. First of all, we need to
deal with singular varieties.

If an elementary contraction cR : X → Z contracs only subvarieties
of codimensions at least 2, we need to introduce a flip X 99K X+ to
make the cone theorem work for X+.

Existence of flips has been proved for threefolds by Mori (1981), for
fourfolds by Shokurov (2003) and in general by Birkar, and
Hacon-Xu independently (2011).

The remaining main difficulty is the non-existence of infinite
sequence of flips. It is known for threefolds (Shokurov 1986,
Kawamata 1992). A breakthrough in this problem has been made by
Birkar-Cascini-Hacon-McKernan (2010).
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Minimal Model Programs

MMP Conjecture

Given a projective manifold X of dimension at least 3, after finitely many
elementary operations, we can obtain a projective variety X ′, which is
birationally equivalent to X , such that

• either there is a Mori fibration f : X ′ → Y with dimY < dimX ′ (
ν(X ′) = −1),

• or X ′ is a minimal variety ( ν(X ′) > 0).
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Minimal Model Programs

The invariant ν is called the numerical dimension. It is conjectured
to be equal to the Kodaira dimension. We recover the three
analogues of curves as follows.

If ν(X ′) = −1, and if the Mori fibration f : X ′ → Y is over a point
Y , then X ′ is a Fano variety. This is an analogue of P1.

If ν(X ′) = 0 then X ′ is a Calabi-Yau variety. This is an analogue of
elliptic curves.

If ν(X ′) = dim X ′, then X ′ is a variety of general type. This is an
analogue of higher genus curves.

As we will see, they are three building blogs in classifications of
projective varieties.

Wenhao Ou Log abundance for Kähler threefolds



Abundance Conjecture

There should be two other types as in the surface case.

Assume that ν(X ′) = −1, and that the Mori fibration f : X ′ → Y is
over a variety Y of positive dimension, then general fibers of f are
Fano varieties of smaller dimensions. This case is an analogue of
ruled surfaces, and can be regarded as a mixture of Fano varieties
and some other lower dimensional variety Y .

If 0 < ν(X ′) < dim X ′, we have the following conjecture.

Abundance Conjecture

Let X be a mildly singular projective variety such that KX is nef. Then
ν(X ) = κ(X ) and KX is semiample. That is, KX induces a fibration
f : X → Y with dim Y = ν(X ) = κ(X ).

The abundance conjecture is true if ν(X ) = 0 or dim X . It is also
proved for surfaces and threefolds (Miyaoka, Kawamata 1990s).
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Abundance Conjecture

Assume that the abundance conjecture is true. Assume that
0 < ν(X ′) < dim X ′. Then we have a fibration f : X ′ → Y as in the
abundance conjecture. In this case, dimY = ν(X ′) and general
fibers of f are Calabi-Yau varieties. This case is an analogue of
elliptic surfaces with Kodaira dimension 1, and can be regarded as a
mixture of Calabi-Yau varieties and some other lower dimensional
variety.

From the viewpoint of MMP conjecture and abundance conjecture,
we should recover exactly five types of classifications, as for minimal
surfaces. We note that these two conjectures are known to be true
for threefolds.

More precisely, if X is a projective manifold of dimension at least 3,
the two conjecture propose that X is birational to a variety Z , which
is classified as follows.
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Classification Conjecture

We first recall the classification for minimal surfaces.

κ(S) = −1, S ∼= P2 (analogue of P1)

κ(S) = −1, S is a ruled surface. There is a morphism S → B to a
curve whose fibers are P1 (mixture of P1 and some other curve B)

κ(S) = 0, S is one of the following surfaces: K3 surfaces,
two-dimensional complex tori, Enriques surfaces, bielliptic surfaces
(analogue of elliptic curves)

κ(S) = 1, S is an elliptic surfaces. There is a morphism S → B to a
curve whose smooth fibers are elliptic curves (mixture of elliptic
curves and some other curve B)

κ(S) = 2, S is a surface of general type (analogue of higher genus
curves)
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Classification Conjecture

ν(Z ) = −1, Z is a Fano variety (analogue of P1)

ν(S) = −1, Z is a Mori fiber space. There is a Mori fibration Z → B
to a variety B, whose general fibers are Fano varieties (mixture of
Fano varieties and some other varieties B of smaller dimensions)

ν(Z ) = 0, Z is a Calabi-Yau variety (analogue of elliptic curves)

0 < ν(Z ) < dim Z . There is a morphism Z → B to a variety whose
general fibers are Calabi-Yau varieties (mixture of Calabi-Yau
varieties and some variety B of smaller dimensions)

ν(Z ) = dim Z , Z is a variety of general type (analogue of higher
genus curves)

This classification allows us to study varieties by induction on
dimensions.
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MMP for Kähler Threefolds

A compact complex manifold X is projective if and only if there is a
rational Kähler form, that is, a Kähler form whose class is in
H1,1(X ,C) ∩ H2(X ,Q) (Kodaira 1954).

There might be much fewer subvarieties in a Kähler manifold. For
example, there are Kähler manifolds which do not have proper
subvariety other than points. There are simple Kähler manifolds.

Kodaira problem. Let X be a compact Kähler manifold. Can we
approximiate X by projective manifolds?

• The answer is positive if dimX = 2, after Kodaira.

• There are negative examples if dimX > 4, after Voisin.

• Hsueh-Yung LIN recently give a positive answer for dimX = 3.
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MMP for Kähler Threefolds

MMP for compact Kähler threefolds was initiated by
Höring-Peternell. Following their ideas, the MMP for compact
Kähler threefolds is now established, after Campana, Das, Hacon,
Höring, Ou, Peternell...

MMP for Kähler threefolds

Given a compact Kähler threefold X , after finitely many elementary
operations, we can obtain a compact Kähler variety X ′, which is
bimeromorphic to X , such that

• either there is a Mori fibration f : X ′ → Y with dimY < dimX ′ (
ν(X ′) = −1),

• or X ′ is a minimal variety ( ν(X ′) > 0).
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MMP for Kähler Threefolds

Campana-Höring-Peternell (2016) announced the abundance
conjecture for Kähler threefold. That is, if X is a compact Kähler
threefold with mild singularities such that KX is nef, then KX is
semiample.

The proof of the abundance conjecture consists of two steps. The
first step is to show that κ(X ) > 0, that is h0(X ,mKX ) > 0 for some
m > 0 sufficiently divisible. This is called the non-vanishing theorem.

In the second step, we discuss according to the numerical dimension
ν(X ). The difficult cases are those when ν(X ) = 1, 2. Thanks to
Kawamta, we only need to show that κ(X ) > 0 in these cases.

If ν(X ) = 1, then one apply deformation theory to conclude. The
proof of the Kähler case is the same as the projective case.

If ν(X ) = 2, then we also want to adapt the projective method to
the Kähler case. But there is a main difficulty, which is the lack of
Bogomolov-Gieseker type inequality for singular compact Kähler
varieties.
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Proof for ν(X ) = 2.

We need to prove that κ(X ) > 0. The idea is to use Riemann-Roch
Theorem to show that h0(X ,mKX ) grows at least linearly on m.

We recall the RR Theorem. Let V be a compact smooth threefold,
and L a line bundle on V . Then the Euler characteristic satisfies

χ(V ,mL) = h0(V ,mL)− h1(V ,mL) + h2(V ,mL)− h3(V ,mL)

χ(V ,mL) =
L3

6
·m3 − KV · L2

4
·m2 +

(
K 2
V + c2(V )

)
· L

12
·m + χ(V ).

A simple case: X is smooth. We let V = X , L = KX in the previous
RR formula. The condition ν(X ) = 2 implies that
L3 = KV · L2 = K 2

V · L = 0. Then we get

χ(X ,mKX ) = χ(V ,mL) =
c2(V ) · L

12
·m + χ(V ).

Since V is smooth and L is nef, after Enoki, BG inequality and
Miyaoka, we deduce that c2(V ) is pseudoeffective. Thus
c2(V ) · L > 0.
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Proof for ν(X ) = 2.

The difficulty arises when X is not smooth. We may let V be a
desingularization of X . But K 2

V · L < 0 in general in the linear term(
K 2
V + c2(V )

)
· L

12
·m

We manage to show that
(
K 2
V + c2(V )

)
· L > ĉ2(X ) · L, where ĉ2 is

the Q-Chern class, noting that X is klt and hence has quotient
singularities in codimension 2.

A straightforward idea is to prove that ĉ2(X ) is positive. Hence it is
conjectured that BG-inequality holds for klt spaces: If (X ,ω) is a
compact Kähler variety with klt singulariites and E is stable reflexive
coherent sheaf of rank r on X , then(

ĉ2(E)− r − 1

2r
ĉ1(E)2

)
ωn−2 > 0.

This conjecture is true when X has quotient singularities only, after
Faulk (2019).
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Proof for ν(X ) = 2.

Solution (Das-Ou): We construct a bimeromorphic model Y → X
so that Y has quotient singularities and K 2

Y · L = 0, ĉ2(Y ) · L > 0,
and conclude with Faulk’s theorem.

Fact: (X , ∆) a reduced dlt pair. Then, in codimension 2, for x ∈ X ,
either the pair is log smooth, or analytic locally
(X , ∆) ∼= Cn−2 × (C2/Zm,E/Zm). The key point is that the
quotient index is the same as the Cartier index of ∆.
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Thank you !
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